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Abstract 
Connecting changes in emissions to air quality is critical for evaluating the effects of a 

specific policy. Here, we introduce a methodology to aid in assessing the air quality impacts of 
changes in the energy system. A set of widely varying scenarios that describe alternative 
potential evolutions of the US energy system is constructed using the TIMES energy system 
model. For each scenario, an R script is used to communicate future emissions changes to the 
CMAQ photochemical air quality model. Example results are shown, and the development of the 
TIMES scenarios is described for users who wish to adapt them to alternate geographies. 
Possible use cases include evaluating the air quality effects of specific emissions reduction 
measures or of broad changes to dominant technologies in major sectors such as 
transportation.  
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Highlights 
• Divergent scenarios enable robust modeling of the energy system under uncertainty 
• Emissions changes from energy scenarios linked to modeling air quality impacts  
• New features simplify robust and traceable energy-atmospheric modeling 
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1. Introduction 
While air quality has improved over recent decades in much of the world, air pollution 

remains an important public health problem, even in developed countries. Air quality 
management plans in the United States have historically considered only the near future (<10 
years). This practice began when the most common mechanisms for emissions reductions were 
incremental changes in industrial processes or the adoption of end-of-pipe controls or other 
technologies that could be retrofitted onto existing infrastructure. Additionally, pressure is 
building globally to reduce emissions of greenhouse gases (GHGs). Transformative shifts 
toward cleaner forms of energy with net-zero GHG emissions would lead to significant 
reductions in air pollutant emissions, but will require decades to implement due to the significant 
expense and long lifetime of energy and transportation system infrastructure (Amann et al., 
2011; NASEM, 2021). One challenge for long-term air quality planning is the complex and 
nonlinear relationship between the emissions associated with the built environment and energy 
system infrastructure and the resulting consequences for air pollution and human health. 
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The disconnect between emissions and ambient air concentrations is fundamental to 
environmental policy considerations. Emissions are the factor that society can control, but the 
resulting ambient concentrations of pollutants are what affect human health. Due to the 
complexities of atmospheric transport and the nonlinear chemical reactions associated with 
pollutant formation, there is often not a proportional relationship between emissions and 
concentrations, necessitating the use of computationally intensive simulations to assess the 
impact of potential control strategies. Several models are available to calculate future emissions 
and many models exist that predict air quality given emissions inputs, but these models have 
typically not been used in a linked fashion. Some of these models have focused on creating 
detailed representations of the emissions associated with specific scenarios or environmental 
regulations (Amann et al., 2011; Elobeid et al., 2013; Kaplan & Witt, 2019; Shi et al., 2017; 
Timilsina, 2018; Victor & Nichols, 2022, 2022; Zapata et al., 2018; Zhu et al., 2022). The 
Integrated MarkAl-EFOM System (TIMES) (Loulou et al., 2016) is one such model, and forms a 
part of the framework described here. Other analyses (Moghani & Archer, 2020; Pye et al., 
2022) have used relatively crude representations of the effects of broadly applied emissions 
reductions with robust representations of pollutant formation and transport in the atmosphere. 
As emission reduction measures shift toward more long-term, capital-intensive strategies, it will 
become increasingly important to evaluate air quality projections on a longer time horizon, 
reducing the applicability of simplified emissions projections at a national or regional scale.  

Previous attempts to unify the arenas of emissions projections and air quality impact 
assessments include reduced complexity models such as PCAPS (Baker et al., 2023), InMAP 
(Tessum et al., 2017), APEEP/AP3 (Muller & Mendelsohn, 2006), and EASIUR (Heo & Adams, 
2015) among others (Eastham et al., 2023; Garcia-Menendez et al., 2015; Selin & Selin, 2023). 
These retain varying levels of complexity, but generally simplify the relationships from emissions 
to concentrations and reduce the temporal and sometimes spatial resolution to capture average 
changes in concentration with much lower computational cost. Other efforts to connect energy 
system and chemical transport models (Gonzalez-Abraham et al., 2015; Loughlin et al., 2011; 
Ran et al., 2015) have retained the computational complexity of using the Sparse Matrix 
Operator Kernel Emissions (SMOKE) model (CMAS, 2023) to generate speciated and spatially 
and temporally allocated emissions required for each future scenario analyzed, thereby 
incurring significant additional technical challenges. 

In previous work, a scenario paradigm designed for the MARKAL model was used to 
produce plausible outcomes for future US emissions that differ significantly from one another 
(Brown et al., 2018). In this paper, the Brown et al. (2018) scenarios are implemented using 
TIMES to project emissions multiple decades into the future. These emissions projections are 
used to compute growth factors by sector, region, and species. The scale factors are used by 
the Community Multiscale Air Quality (CMAQ) model (US EPA, 2019) to directly modify an 
existing spatially and temporally resolved baseline emissions dataset. This methodology 
facilitates simulation of the air quality impacts of widely varying energy scenarios.  

2. Methods 
This research demonstrates the linkage of a suite of existing models to facilitate 

examination of future air quality under widely varying scenarios. The TIMES model allows for 



long-term projections of the broader energy-economic system, including simulating how existing 
and potential policies may shape the evolution of those systems through time. CMAQ 
represents atmospheric chemistry and physics with high spatial and temporal resolution. 
Combining the two models allows users to leverage the attributes of both modeling systems. 

2.1 TIMES  
TIMES is an energy-economic optimization model that tracks fuels, feedstocks, and 

processes that convert between energy types and solves for the mix of technologies that meet 
energy service demands in each modeled region at the lowest total system cost (Loulou et al., 
2016). TIMES users first create a reference scenario based on the technology and policy 
landscape as it currently exists, along with baseline assumptions about future demands, 
resource costs, and efficiency and other performance characteristics of available technologies 
decades into the future. A wide range of alternative scenarios can be generated by modifying 
assumptions about those future conditions. This work uses the United States nine region TIMES 
(US9rT) database and reference case (Lenox, 2019; Figure 1). The TIMES reference case uses 
year 2015 emissions as a baseline and represents specific policies that were in place as of 
2019, including the Cross-State Air Pollution Rule (CSAPR), Tier 3 mobile emissions standards, 
corporate average fuel economy standards, and various new source performance standards. 
Approximations of state-level renewable portfolio standards are also included, aggregated to the 
regional level.  

 

In addition to the reference case, this work uses a scenario paradigm (Brown et al., 
2018) and narrative structure that were initially determined based on stakeholder input (Gamas 
et al., 2015). This work is adapted from the MARKAL framework to TIMES in a manner 
designed to be more flexible for creating a wide range of technological and policy scenarios, but 
the overall scenarios remain the same as in the MARKAL version (Brown et al., 2018). The 
scenarios consider two general factors driving decisions, the level of concern for the 
environment and the rate of technology development. While real-world conditions change 
through time, and thus base-year modeled conditions change as well, we believe our scenario 
background (i.e., technology vs. attitudes) remain highly relevant.  

Figure 1: Spatial aggregation in the US9rT 
model. 



This general methodology was used with TIMES to produce five future emissions 
scenarios. By explicitly considering energy system dynamics, the resulting emission projections 
have greater regional, sectoral, and pollutant specificity than those typically used for projecting 
air quality. The scenarios (Figure 2) have been devised to illustrate combinations of traditional 
or new social paradigms around the environment alongside stagnant or innovative technologies. 
The Low Tech, Eco scenario represents a societal shift towards environmental protection in the 
absence of technological progress. The High Tech, Eco scenario includes this societal shift and 
an increased availability of transformative technologies. The Comfort scenario is characterized 
by stagnant social paradigms and a lack of technological advancements indicated by consumer 
preferences toward increasing comfort. Other Priorities exemplifies the effect of innovative 
technology when decisions are made without concern for the environment. Further discussion of 
these scenarios is available in Brown et al. (2018). 

 
Figure 2 Scenario Descriptions 
* In Brown et al. (2018) the scenario names were: Status Quo = Business as Usual; Low Tech, 
Eco = Conservation; High tech, Eco = iSustainability; Other Priorities = Go Our Own Way; 
Comfort = Muddling Through 

 
TIMES accounts for population growth and the associated increases in demand, 

technological characteristics such as costs, increases in energy efficiency, and improvements in 
emission control technology, as well as more stringent environmental regulations, all of which 
vary across scenarios. TIMES emissions outputs are calculated for each technology as a 
function of market share, specific energy use, conversion efficiency, and energy source, 
facilitating representation of the change in emissions and consequently the change in air quality. 
As an illustrative example, Figure 3 presents nitrogen oxide (NOx) emissions from light-duty 
vehicles (LDVs) by region and fuel type. Due to more stringent Tier 3 emission and fuel 
standards (Federal Register, 2014) and improvements in vehicle efficiency over the coming 
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decades, the total roadway emissions in 2045 are lower than the 2015 historical baseline in 
each scenario despite increasing vehicle mileage driven. In the High-Tech, Eco case, a much 
higher fraction of vehicles uses alternative fuels, which have different pollutant emission profiles. 
In Other Priorities, there is a large shift from gasoline to diesel LDVs, which have lower NOx but 
higher particulate matter (PM) emissions.  

 
Figure 3 Modeled annual light-duty vehicle emissions of NOx in 2045 compared to the 
model results calibrated to historical activity from the same sources. 

 

2.2 CMAQ  
CMAQv5.3.1 is a three-dimensional, Eulerian air quality model (Appel et al., 2021; Byun 

& Schere, 2006) that includes gaseous, aqueous, and particle phase chemistry as well as 
atmospheric transport and aerosol dynamics to simulate interactions among pollutants and the 
environment. Meteorological inputs to CMAQ were generated using the Weather Research and 
Forecasting (WRF) model (Skamarock & Klemp, 2008). Both WRF and CMAQ were run with a 
12 km horizontal resolution over a domain covering the contiguous US (CONUS) and portions of 
Mexico and Canada and extending vertically into the lower stratosphere. 

CMAQ was run for a full year using 2016 meteorology and emissions from each of the 
six scenarios depicted in Figure 2. The Historical Baseline run is based on the National 
Emissions Inventory (NEI) 2017a emissions (US EPA, 2020). The five other model runs 
represent emissions projections in 2045 based on scaling factors determined by TIMES output.  

Conventional approaches to generating perturbed emissions inputs for chemical 
transport modeling are time consuming, computationally intensive, and difficult to document. 
The current framework uses the new Detailed Emission Scaling, Isolation, and Diagnostic 



(DESID) module (Murphy et al., 2021) within CMAQ to streamline the approach and create a 
structure that can be replicated for future work. DESID has many advantageous features, 
including that the emission rate modifications among scenarios are done online in CMAQ rather 
than the additional offline step to prepare them for each scenario, and that the emissions sector 
mapping between TIMES and CMAQ is simple and easily documented for traceability. By using 
DESID, we can separately scale emissions by pollutant, sector, and region.  

2.3 BRIDGING TIMES AND CMAQ  
In addition to the new implementation of the MARKAL scenarios from Brown et al. 

(2018) in TIMES, the novel contribution of this paper is the bridge script that links the TIMES 
and CMAQ models. The model connection described here uses a grow-in-place methodology, 
by mapping the proportional change in regional emissions from TIMES to the same locations as 
current emissions. TIMES calculates emissions for each specific fuel-technology combination. 
CMAQ uses annual, county-level NEI data that are processed by the SMOKE model to create 
inputs that are chemically speciated and spatially and temporally allocated onto the modeling 
grid. A crosswalk was created to map the emissions from TIMES to the NEI via Source 
Classification Codes (SCC), following Loughlin et al. (2011). Table S1 (Supplemental Material) 
shows the mapping, with the use of wildcards (*) to represent the multitude of included 
technologies of varying efficiencies and vintages.  

Although TIMES allows for a robust differentiation of electricity generating unit (EGU) 
types, we restricted the categorization to just coal-fired and non-coal combustion for this grow-
in-place methodology. In any situation where the range of technologies in the future differs 
significantly from the baseline, a determination must be made regarding the granularity of the 
emissions sectors to which the scaling factors are applied. Without aggregating non-coal 
combustion EGUs, the historically sparse distribution of combustion sources other than coal and 
natural gas would lead to unrealistic hot spots for scenarios with high adoption of biomass or 
waste-based combustion. Given that all EGUs provide the same service and we are not 
modeling a significant shift in relative distribution of population or electricity demand in any of 
the future scenarios, it is reasonable to apply the scaling factors to existing generators of 
electricity. All EGUs could have been lumped into a single scaling factor, but the underlying 
emissions profile of coal was sufficiently different to warrant treating it separately. Coal and 
natural gas, which are the two most widely used combustion generators in all cases, behave 
quite differently, with coal combustion decreasing and natural gas combustion increasing in 
almost all future scenarios. In addition to the EGUs, emissions were aggregated across light 
and heavy-duty vehicles by fuel types including diesel, gasoline, and other fuels. Other 
transportation emissions were grouped by modality, including air, rail, shipping, and non-road. 
Industrial emissions were grouped into sector as cement, chemical, food, metal, paper, refining, 
oil & gas extraction, or other industrial source. 
 

The modeling time horizon and time steps used in TIMES simulations can be 
customized to the application, and we use a horizon of 2045 and 5-year time steps in this work. 
Emissions results are imported using code written in R, and the emissions of black carbon (BC), 
carbon monoxide (CO), ammonia (NH3), oxides of nitrogen (NOx), organic carbon (OC), PM in 
10 (PM10) and 2.5 (PM2.5) micron size fractions, sulfur dioxide (SO2), and volatile organic 



compounds (VOC) are extracted. A similar crosswalk shows the mapping between emitted 
species in TIMES and CMAQ. 
Table 1 Crosswalk of emissions between TIMES and CMAQ 
Emitted Species TIMES CMAQ species  
Black carbon BC PEC  
Carbon monoxide CO CO 
Ammonia NH3 NH3 
Oxides of nitrogen NOx NO, NO2 
Particulate Organic carbon OC POC, PNCOM 
Fine particulate matter PM25 Fine  
Coarse particulate matter PM10 Coarse 
Sulfur dioxide SO2 SO2 
Volatile organic 
compounds 

VOC TOL, XYLMN, BENZENE, NAPH, PAR, PRPA, 
MEOH, ETH, ETOH, OLE, ACET, FORM, KET, 
ETHY, ALD2, ETHA, IOLE, ALDX, ISOP, TERP 

 
 

 We used the region scaling feature in DESID, with regions corresponding to the Census 
divisions used in the US9r TIMES model. Emissions scaling factors to estimate future-year 
emissions for CMAQ are calculated by summing the annual emissions from TIMES separately 
for each pollutant, source category, and region for the base and future year, summand 
calculating the ratio of these future-year to base-year totals. Scaling factors are thus constant 
throughout the year. TIMES is calibrated to the year 2015, which we assume to be 
representative of the 2016 emissions processed by SMOKE.  Emissions from sources external 
to the U.S. energy system, including anthropogenic sources outside the United States as well as 
natural emissions sources such as biogenic VOCs, wildland fires, windblown dust, and sea 
spray, are all unchanged from the present to focus the analysis on the impacts of changes in 
anthropogenic emissions. 

3. Results 
The full suite of DESID input files with scaling factors from TIMES for each of the five 

future scenarios is available in the Supplement. The scaling factors for NOx emissions from 
LDVs are presented in Figure 4. Consistent with Figure 3, it is evident that the scaling factors 
are always less than 1 for gasoline vehicles in all future scenarios due to the fuel and emissions 
standards, increased use of alternative technologies, and improved fuel efficiency. However, 
since the fraction of LDVs operating on fuels other than gasoline is small in the historical 
baseline, the scaling factor for those emissions in the future can be quite large. There is 
significant variability among regions for diesel-fueled sources and other non-gasoline-fueled 
sources.  



 
Figure 4 Regional scaling factors for light duty vehicle NOx emissions by vehicle fuel 
type across all future scenarios. Other fuel includes compressed natural gas and 
ethanol. Note that each panel has a different y-axis. 

Each unique combination of region (Figure 1), source (Table S1), and pollutant (Table 1) 
is represented by a scaling factor, so that each future scenario has over 1,500 scaling factors. 
As in the LDV NOx examples, these values range widely with minimum values of 0 in cases 
where a technology is no longer used in that region to many times the historical value. The 
range of scaling factors across regions and technologies (although omitting some pollutants for 
clarity) is shown in Figure 5. All scenarios also have at least some scaling factors that are 
greater than one, even when the concentrations overwhelmingly decrease in that region and 
scenario, e.g. for the Low Tech, Eco case in the Mid Atlantic region. This demonstrates the 
added value of incorporating air quality modeling into policy analyses, as dramatic air quality 
improvements may be obscured within complex changes in emission portfolios.   

 
Figure 5 The range of technology-specific emissions scaling factors for four major 
pollutants plotted on a log scale. 

Annual average PM2.5 concentrations at 12-km resolution are compared in Figure 6. The 
regional changes in concentrations can be linked to the scenario narratives. In Other Priorities, 
domestic fuels are preferred, leading to worse air quality near refineries and extraction sites 



along the Gulf Coast and Intermountain West. In Comfort, air quality worsens across the country 
with larger changes near population centers, as people desire more energy-intensive goods and 
services. In the two eco-friendly scenarios there are large areas of improved air quality 
associated with a shift toward lower-emitting technologies. Even the Status Quo future has 
many areas with improved air quality associated with regulations that have already been 
enacted. 
 

Figure 6 Annual average PM2.5 concentrations modeled by CMAQ. The Historical Baseline 
plot shows concentrations in 2016, while the other panels show differences in 2045 from 
Historical Baseline. 

 
The scenarios here do not represent specific policies and are intended to demonstrate 

variability in plausible prediction space. In Other Priorities case, PM2.5 concentrations are lower 
around many population centers, including Chicago, Los Angeles, and Pittsburgh. SO2 is a 
major precursor to particulate formation and nearly all the future SO2 emissions are lower in 
these scenarios. In High Tech, Eco, almost all coal-fired power plants in the West South Central 
region no longer operate, and simultaneously the oil and gas sector is much smaller; this leads 
to much lower PM2.5 concentrations in Texas, Oklahoma, and Arkansas. There are still hot spots 
in this region associated with increases in some industries such as mineral and chemical 
processing. In the Western Midwest, underground resource extraction increases in all 
scenarios, leading to a local increase in both PM2.5 and ozone concentrations (Figure 7). 

There are situations where the emissions change may lead to air quality improving in 
some parts of a region while worsening in other parts. For example, PM2.5 and ozone in the 
Other Priorities scenario show both increases and decreases in concentrations across many 
regions. The decreases noted above contrast with increases in northern Indiana, eastern 
Washington, and Scranton, PA. There is a high degree of variability in this scenario across the 
Midwest for PM2.5 and across the east coast for ozone, with urban areas exhibiting decreases in 
both pollutants. The ozone changes in the West Coast region stand out (Figure 7), which is 
explained by the wide diversity of land use along the west coast, including highly populated 
urban areas, natural forests, and farmland. This highlights another benefit of examining the 



CMAQ-simulated concentration fields in addition to the aggregated TIMES emissions. The 
CMAQ predictions provide a much richer interpretation of the spatially-dependent effects of 
each future emission scenario.  

 
 
Figure 7 Summer season ozone concentrations for the Historical Baseline and 
differences from the Historical Baseline for each of the future scenarios. 
 

One significant benefit of using a chemical transport model compared to analyzing 
emission changes alone is the ability to consider the impacts of air quality on human health or 
sensitive ecosystems.  To assess these impacts, we calculated the change in population-
weighted concentrations for each of the future scenarios using the concentration of ozone or 
PM2.5 and the population residing within the same grid cell (CIESIN, 2018). Then we calculate 
the average for each region and for the CONUS. These concentration changes are normalized 
by the population in each region (Figure 8):  

𝑋𝑋𝑅𝑅 =
∑ 𝐶𝐶𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑖𝑖

−
∑ 𝐻𝐻𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑖𝑖

 

where XR is the population-weighted concentration change, C is the concentration of the 
pollutant, either annual average PM2.5 or summer average maximum daily eight-hour average 
ozone (MDA8), H is the historical concentration of the same pollutant, P is the population in the 
same area in 2020, i refers to the 12-km grid cell, and R refers to the region. Population-
weighted ozone decreases along the east and west coast for all future scenarios but increases 
for at least some interior regions in all scenarios except Low Tech, Eco and Status Quo. 
Exposure to PM is also reduced in all regions for Status Quo and Low Tech, Eco and nearly 
everywhere for High Tech, Eco. However, PM exposure in the Comfort scenario increases in 
every region. Comparing these values to the range of scaling factors in Figure 5, the benefit of 
the complete picture that includes ambient concentrations resulting from the emissions changes 
is in allowing the impacts of an intricate matrix of changing pollutant emissions on human 
exposure to be quantified. 

 



 
Figure 8 Population-weighted concentration changes compared to historical values. The 
black dots indicate the average populated weighted change for the CONUS domain. 

4. Conclusion 
The TIMES-CMAQ bridge tool facilitates analysis of the air quality impacts of future 

energy scenarios. Since TIMES and CMAQ are both models that are used in many nations, the 
bridge tool described here is broadly applicable. The mapping of the TIMES emissions 
technologies to CMAQ emissions sectors specified in the bridge tool must be developed for the 
TIMES database and emissions modeling platform used in any application.  

One major benefit of bridging the TIMES and CMAQ models is an improved spatial 
picture of the changes in air quality. Both ozone and PM2.5 have adverse effects on human 
health. Improvements in air quality in densely populated areas will have greater impact on 
overall public health, so increased spatial resolution allows for additional insights into the 
exposure to pollutants. An example of this is the Houston, TX metro area, which has more than 
7 million residents. In the Other Priorities scenario, PM2.5 concentrations are 0.5 to 2 μg/m3 
higher than the historical baseline, which would result in millions of people being exposed to 
increased pollutant levels. Conversely, in the Low Tech, Eco scenario, the largest increase is 
only 1.5 μg/m3 and many parts of the metropolitan area have improved future air quality. In the 
Other Priorities case, increases and decreases in PM2.5 concentrations both occur in different 
parts of the South Atlantic and South Central regions. Many of the cities in these regions 
experience improved air quality. There are some locations with poorer air quality, potentially 
suggesting areas needing additional control measures to avoid worsening air pollutant 
concentrations and protect public health.  



While the TIMES-CMAQ bridge method has many advantages, there are uncertainties 
remaining. The only emissions that were changed for the futures in this scenario are those 
associated with anthropogenic energy use within the United States. Therefore, changes in 
boundary conditions, energy-related emissions occurring in Canada and Mexico, emissions 
associated with agricultural activities, and emissions from wildfires were outside the scope of 
the study. Regulatory provisions adopted after 2019, such as the Inflation Reduction Act, were 
not considered in these scenarios, but could be added in subsequent refinements of this 
approach. Another uncertainty is that year 2016 meteorology was used for all simulations, but 
climate change may lead to changes in the future.  

This method is an attempt to fill a gap in the modeling options available. The specificity 
is increased compared to a reduced complexity model or using either TIMES or CMAQ models 
alone. While this method uses a grow-in-place methodology to allocate future emissions, other 
procedures implement a more complex algorithm to attempt to predict the location of future 
large emissions sources such as EGUs (Wang et al., 2021). For situations where very large 
shifts in emissions are expected, these additional considerations may be warranted and have an 
important effect on the calculation. For instance, if the most common fuel source for motor 
vehicles changes from gasoline and diesel to compressed natural gas, the new emissions may 
differ enough that scaling doesn’t accurately capture the chemistry. Another uncertainty not well 
captured in this approach is how the permitting process may affect the location of future 
emissions sources in areas in nonattainment of air quality regulations. There are also many 
future situations in which the geographic distribution of emissions, typically associated with 
population centers and transportation corridors, would likely be relatively consistent over time. 
The technique employed here suits these situations by providing detailed insight without overly 
burdensome calculations. 

The TIMES-CMAQ bridge method can be used for a wide variety of future analyses. The 
TIMES scenario infrastructure is specifically designed to optimize the energy system with the 
addition of various policies or technologies while accounting for a wide range of uncertainties in 
possible future developments. The BRIDGE code then automates the process of creating the 
input file for CMAQ. The variety of scenarios considered provides a plausible estimate of the 
spread of future emissions and air quality, encompassing a wide range of potential outcomes 
and allowing the modeler to assess more robustly the impact of hypothetical policies or actions 
under a range of conditions and potentially avoid possible unintended consequences. The base 
year in CMAQ can be updated based on the most recently available NEI and the scenario files 
can be used with more recent updates to the TIMES database. This will allow for a simplified 
structure for many future investigations that will remain robust within the existing model 
architecture that is regularly maintained. The BRIDGE code as published is designed to work 
with the US9rT naming conventions, but as these are standard across TIMES databases, only 
minimal changes are needed to run CMAQ analyses based on other TIMES models. This work 
demonstrates how emission projections from energy system models such as TIMES can be 
linked to CMAQ to assess the air quality and health impacts of large-scale changes in the 
energy system.  
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Table S1:  
 Crosswalk of emissions sources between models. Wildcards are used for the specific 
technologies in TIMES as there are additional age, control device, and efficiency 
specifications represented by these high-level technologies. 
Description Technology Names in US9rT 

(* =wildcard) 
Source Sectors in NEI 

Coal-fired power 
plants 

ECOAL*, ECHPCOAL*, ECSTMR*, 
SECIGCC*, SECST* SEELCB* 

Base Load/Load Following Units: 
Coal+Waste Coal 

Other Combustion 
power plants 

All E* except EXP* or those defined 
for coal and SELF*, SEBSTM*, 
SEELCWTE*  

Base Load/Load Following Units: 
Gas + Oil; Base Load/Load 
Following Units: Other; Peaking 
Units 

Heavy duty vehicle 
(HDV) diesel 

TBDSL*, TCDSL*, TH*B20*, 
TH*DSL* TMB20*, TMDSL* 

Heavy duty diesel 

HDV gas TBGSL*, TCGSL*, TH*GSL*, 
TM*GSL* 

Heavy duty gasoline 

HDV other TBCNG*, TCCNG*, TH*CNG*, 
TH*LPG*, TMCNG*, TMLPG* 

Heavy duty non-diesel non-
gasoline 

Light duty vehicle 
(LDV) diesel 

TL*DSL Light duty diesel 

LDV gas TL*CONV* and TL*GSL Light duty gasoline 
LDV other TL*CNG, TL*LPG, TL*ELC, 

TL*ETH*, TL*E85* 
Light duty non-diesel non-gasoline 

Airport TA* airports 
Non-road vehicles TO* Nonroad without agriculture 
Rail TP* and TR* Railyards, line haul rail 
Shipping TS* C1, C2, & C3 marine 
Residential RSHWD* Residential wood combustion 
Cement Industry INC* Cement Kilns NAICS 327 
Chemical industry IC* Chemicals NAICS 325 
Food Industry IF* NAICS 311 
Metal Industry IM* NAICS 331 



Non-metallic 
minerals 

IN* Nonmetallic minerals non-cement 
kilns NAICS 327 

Paper industry IP* Pulp and Paper NAICS 322 
Refineries Technologies that output REF* 

commodities 
NAICS 324 

Other Industry IO* Stationary non-EGU sources not 
in other tags 

Oil & gas 
extraction 

RSS* Non-point oil & gas, Point oil & 
gas 
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